Home
|
The Society
|
Membership
|
Board of Directors
|
Multinational Finance Journal
|
Annual Conferences
Search
Date Range
in
Title
Author
Abstract
Full Text
Keywords
All Years
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
to:
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
Forthcoming Articles
Published Articles
Volume 28 (2024)
Volume 28, Numbers 3 & 4
38-75 (September/December 2024)
Volume 28, Numbers 1 & 2
Pages 1-37 (March/June 2018)
Volume 26 (2023)
Volume 27, Numbers 3 & 4
48-66 (September/December 2023)
Volume 27, Numbers 1 & 2
1-47 (March/June 2023)
Volume 26 (2022)
Volume 26, Numbers 3 & 4
27-59 (September/December 2022)
Volume 26, Numbers 1 & 2
1-26 (March/June 2022)
Volume 25 (2021)
Volume 25, Numbers 3 & 4
(September/December 2021)
Volume 25, Numbers 1 & 2
(March/June 2021)
Volume 24 (2020)
Volume 24, Numbers 3 & 4
Pages 119-266 (September/December 2020)
Volume 24, Numbers 1 & 2
Pages 1-117 (March/June 2020)
Volume 23 (2019)
Volume 23, Numbers 3 & 4
Pages 141-272 (September/December 2019)
Volume 23, Numbers 1 & 2
Pages 1-139 (March/June 2019)
Volume 22 (2018)
Volume 22, Numbers 3 & 4
Pages 119-254 (September/December 2018)
Volume 22, Numbers 1 & 2
Pages 1-118 (March/June 2018)
Volume 21 (2017)
Volume 21, Number 4
Pages 211-283 (December 2017)
Volume 21, Number 3
Pages 133-210 (September 2017)
Volume 21, Number 2
Pages 49-132 (June 2017)
Volume 21, Number 1
Pages 1-48 (March 2017)
Volume 20 (2016)
Volume 20, Number 4
Pages 273-354 (December 2016)
Volume 20, Number 3
Pages 181-271 (September 2016)
Volume 20, Number 2
Pages 85-179 (June 2016)
Volume 20, Number 1
Pages 1-83 (March 2016)
Volume 19 (2015)
Volume 19, Number 4
Pages 223-313 (December 2015)
Volume 19, Number 3
Pages 149-221 (September 2015)
Volume 19, Number 2
Pages 77-147 (June 2015)
Volume 19, Number 1
Pages 1-75 (March 2015)
Volume 18 (2014)
Volume 18, Numbers 3 & 4
Pages 169-336 (September/December 2014)
Volume 18, Numbers 1 & 2
Pages 1-167 (March/June 2014)
Volume 17 (2013)
Volume 17, Numbers 3 & 4
Pages 149-369 (September/December 2013)
Volume 17, Numbers 1 & 2
Pages 1-148 (March/June 2013)
Volume 16 (2012)
Volume 16, Numbers 3 & 4
Pages 155-301 (September/December 2012)
Volume 16, Numbers 1 & 2
Pages 1-154 (March/June 2012)
Volume 15 (2011)
Volume 15, Numbers 3 & 4
Pages 157-296 (September/December 2011)
Volume 15, Numbers 1 & 2
Pages 1-156 (March/June 2011)
Volume 14 (2010)
Volume 14, Numbers 3 & 4
Pages 153-317 (September/December 2010)
Volume 14, Numbers 1 & 2
Pages 1-151 (March/June 2010)
Volume 13 (2009)
Volume 13, Numbers 3 & 4
Pages 155-321 (September/December 2009)
Volume 13, Numbers 1 & 2
Pages 1-154 (March/June 2009)
Volume 12 (2008)
Volume 12, Numbers 3 & 4
Pages 157-312 (September/December 2008)
Volume 12, Numbers 1 & 2
Pages 1-155 (March/June 2008)
Volume 11 (2007)
Volume 11, Numbers 3 & 4
Pages 157-322 (September/December 2007)
Volume 11, Numbers 1 & 2
Pages 1-156 (March/June 2007)
Volume 10 (2006)
Volume 10, Numbers 3 & 4
Pages 153-305 (September/December 2006)
Volume 10, Numbers 1 & 2
Pages 1-151 (March/June 2006)
Volume 9 (2005)
Volume 9, Numbers 3 & 4
Pages 131-269 (September/December 2005)
Volume 9, Numbers 1 & 2
Pages 1-130 (March/June 2005)
Volume 8 (2004)
Volume 8, Numbers 3 & 4
Pages 141-274 (September/December 2004)
Volume 8, Numbers 1 & 2
Pages 1-139 (March/June 2004)
Volume 7 (2003)
Volume 7, Numbers 3 & 4
Pages 107-230 (September/December 2003)
Volume 7, Numbers 1 & 2
Pages 1-106 (March/June 2003)
Volume 6 (2002)
Volume 6, Numbers 3 & 4
Pages 131-258 (September/December 2002)
Volume 6, Number 2
Pages 65-130 (June 2002)
Volume 6, Number 1
Pages 1-63 (March 2002)
Volume 5 (2001)
Volume 5, Number 4
Pages 225-311 (December 2001)
Volume 5, Number 3
Pages 155-224 (September 2001)
Volume 5, Number 2
Pages 87-154 (June 2001)
Volume 5, Number 1
Pages 1-86 (March 2001)
Volume 4 (2000)
Volume 4, Numbers 3 & 4
Pages 159-288 (September/December 2000)
Volume 4, Numbers 1 & 2
Pages 5-153 (March/June 2000)
Volume 3 (1999)
Volume 3, Number 4
Pages 223-282 (December 1999)
Volume 3, Number 3
Pages 147-221 (September 1999)
Volume 3, Number 2
Pages 71-145 (June 1999)
Volume 3, Number 1
Pages 1-70 (March 1999)
Volume 2 (1998)
Volume 2, Number 4
Pages 245-310 (December 1998)
Volume 2, Number 3
Pages 167-244 (September 1998)
Volume 2, Number 2
Pages 85-165 (June 1998)
Volume 2, Number 1
Pages 1-83 (March 1998)
Volume 1 (1997)
Volume 1, Number 4
Pages 255-324 (December 1997)
Volume 1, Number 3
Pages 169-254 (September 1997)
Volume 1, Number 2
Pages 93-168 (June 1997)
Volume 1, Number 1
Pages 1-80 (March 1997)
Forthcoming Articles
()
General Information
()
Published Articles By Year
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
1997 - 2025
Volume 22, Numbers 3 & 4 / September/December 2018 , Pages 119-254
Download Table of Contents
Download Article 913.67 Kb
A Comparative GARCH Analysis of Macroeconomic Variables and Returns on Modelling the Kurtosis of FTSE 100 Implied Volatility Index
Multinational Finance Journal, 2018, vol. 22, no. 3/4, pp. 119-172
Abdulilah Ibrahim Alsheikhmubarak
, Royal Holloway, University of London, UK
Corresponding Author
Tel: +447852441389 Email: pcva012@live.rhul.ac.uk
Evangelos Giouvris
, Royal Holloway, University of London, UK
Abstract:
Modelling the volatility (or kurtosis) of the implied volatility is an important aspect of financial markets when analysing market consensus and risk strategies. The purpose of this study is to evaluate the ability of symmetric and asymmetric GARCH systems to model the volatility of the FTSE 100 Implied Volatility Index (IV). We use GARCH, EGARCH, GJR-GARCH and GARCH-MIDAS to model variance. We also introduce FTSE 100 returns and several macroeconomic variables (UK industrial production, 3M LIBOR, GBP effective exchange rate and unemployment rate) to investigate whether they explain variance. Our results show that market returns is a major explanatory factor besides macroeconomic variables. Also, GARCH (1,1) outperforms other asymmetric models unless there is exceptionally high volatility such as the crisis of 2008 in which case EGARCH performs better. GJR-GARCH is outperformed by all other models. GARCH-MIDAS shows that both macroeconomic variables and market returns are useful when estimating IV.
Keywords : FTSE 100 implied volatility index (IV); GARCH; EGARCH; GJR-GARCH; GARCH-MIDAS; FTSE 100 index returns; macroeconomic variables
View in Bib TeX Format
View Cite Format 1
View Cite Format 2
Structured Abstract
Download Article 591.02 Kb
The Risk-Asymmetry Index as a new Measure of Risk
Multinational Finance Journal, 2018, vol. 22, no. 3/4, pp. 173-210
Elyas Elyasiani
, Temple University, USA
Luca Gambarelli
, University of Modena and Reggio Emilia, Italy
Silvia Muzzioli
, University of Modena and Reggio Emilia, Italy
Corresponding Author
Abstract:
The aim of this paper is to propose a simple and unique measure of risk that subsumes the conflicting information contained in volatility and skewness indices and overcomes the limitations of these indices in accurately measuring future fear or greed in the market. To this end, the concept of upside and downside corridor implied volatility, which accounts for the asymmetry in the risk-neutral distribution, is exploited. The risk-asymmetry index is intended to capture the investors’ pricing asymmetry towards upside gains and downside losses. The results show that the proposed risk-asymmetry index can play a crucial role in predicting future returns, at various forecast horizons, since it subsumes the information embedded in both the volatility and skewness indices. Furthermore, the risk-asymmetry index is the only index that, at very high values, possesses the ability to clearly highlight a risky situation for the aggregate stock market.
Keywords : risk-asymmetry; corridor implied volatility; risk-neutral moments; risk measures; return predictability
View in Bib TeX Format
View Cite Format 1
View Cite Format 2
Structured Abstract
Download Article 362.17 Kb
Wealth Effects of Bond Rating Announcements
Multinational Finance Journal, 2018, vol. 22, no. 3/4, pp. 211-254
Yuriy Zabolotnyuk
, Carleton University, Canada
Corresponding Author
Email: yuriy_zabolotnyuk@carleton.ca
Abstract:
This paper employs meta-analysis methodology to reconcile the diverse international empirical evidence on the effects of bond rating announcements on the stock prices of the issuing firms. The random-effects model meta-analysis of 53 published studies and 421 sub-samples of data covering a range of countries and 44,713 bond rating announcements reveals an average cumulative abnormal stock return of -1.64% associated with the bond downgrades and an average cumulative abnormal stock return of 0.28% associated with the bond upgrades. Factors such as initial bond rating, issuer location, announcement period, and rating change size have significant effects on the size of the abnormal stock returns around the rating announcement dates.
Keywords : bond rating announcements; wealth effects; meta-analysis; information asymmetry
View in Bib TeX Format
View Cite Format 1
View Cite Format 2
Structured Abstract
Copyright © 2010. All rights reserved. Multinational Finace Society. Design and Development by:
Exarsis Business Solutions Ltd.
This work is licensed under a
Creative Commons Attribution-NonCommercial 4.0 International License
.