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I.  Introduction

The use of derivative securities in risk management activities emerged
in the early 1990s and has evolved rapidly since. They now are the most
important tool in financial risk management. According to the 1998
Wharton school survey of financial risk management by US
non-financial firms,  over 50% of the responding firms use derivatives
products to hedge their exposure, 83% of them use derivatives to hedge
foreign-exchange risk, 76% to hedge interest-rate risk, and 56% to
hedge commodity-price risk.1 In the current economic situation, many
non-financial institutions such as gold-mining firms, energy companies
or airlines companies may face different financial risks simultaneously
and hence look for the most efficient way to hedge their portfolios.

For example, gold-mining firms may be exposed to different types
of risk: commodity risk, which can include uncertainty about the price
of their primary product, gold, as well as their by-products such as silver
and copper; since these firms sell their products in other countries, they
are exposed to currency risk; and their interest rate risk exposure is
primarily related to their fixed-rate and variable-rate debt. Though all
these markets are very active and very liquid so that a firm could hedge
all its different risk exposures separately, it would be more interesting
to adopt a portfolio approach because it allows the firm to account for
the correlations between these different financial markets and hedge
simultaneously a great variety of different financial risks. To attain this
goal, basket options are an efficient instrument to use.

Basket options are a type of exotic option whose payoff depends on
the value of a basket of assets. They offer the flexibility of being able
to include virtually any kind and any number of assets, and hence can
suitably respond to the specific needs of a firm in hedging its risk
exposures. A risk manager may have other incentives in using basket
options: depending on the design of each option, they are usually
cheaper than a portfolio of standard options. In practice, basket options
are traded over-the-counter and are designed specifically to meet the
needs of the buyer. For these reasons, the liquidity premium required by
the counterpart may annihilate some of the advantages coming from the
correlation structure of the basket.

The pricing of basket options is more challenging than that of

1. Financial Management, Vol. 27, No. 4, winter 1998.
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standard options because there is no explicit analytical solution for the
density function of a weighted sum of correlated assets. Several
approaches are proposed in the literature to price basket options. They
can be categorized as follows:

Numerical methods: Monte Carlo simulations [Barraquand (1995),
Pellizzari (2001)], Quasi-Monte Carlo [Dahl (2000) and Dahl and Benth
(2001)], and multinomial trees [Rubinstein (1994), Wan(2002)],

Upper and lower bounds: Curran (1994), Vanmaele, Deelstra and
Liinev (2004), Laurence and Wang (2004) and Deelstra, Liinev and
Vanmaele (2004),

Analytical approximations: Gentle (1993), Huynh (1994), Milevsky
and Posner (1998a, 1998b, 1999), Posner and Milevsky (1999), Ju
(2002), Datey, Gauthier and Simonato (2003) and Brigo et al. (2004).

However, all these papers are based on two main hypotheses. They
assume constant interest rates and homogeneous basket options; that is,
all the assets underlying the basket are of the same nature and thus
hedge the same type of risk. Unfortunately, this homogeneity in basket
assets does not always match a firm's needs, and with a growing
diversification in investors' portfolios, heterogeneous basket options
become a very efficient tool to hedge multiple risk exposures
simultaneously.

This article proposes analytical approximations to price
heterogeneous basket options, consisting of commodities, foreign
currencies and zero-coupon bonds, with stochastic interest rates, and
compares the accuracy and the performance of these approximations for
different sets of parameters. Three distributions based on the moment
matching technique will be used to approximate the basket density
function: inverse gamma distribution, Edgeworth expansion around the
lognormal distribution and Johnson distribution. It is found that the
Edgeworth-lognormal and Johnson approximations perform better than
the inverse gamma approximation. The contributions of this article are:
(1) to design an arbitrage-free framework in which the domestic and the
foreign interest rates, the exchange rate, the commodity price and the
convenience yield are stochastic, (2) to compute the moments of the
heterogeneous basket under the T–forward measure, (3) to show that
some of the existing analytical approximations may be used in this very
general setting and (4) to quantify the approximation errors.

The next section presents the pricing model under the forward
measure. Section III derives the inverse gamma, the
Edgeworth-lognormal and the Johnson approximations. Section IV
compares the performance of the three approximations. Section V
discusses some extensions and Section VI concludes.
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II. Pricing of a European Heterogeneous Basket Option

Let us consider a non-financial firm looking for an alternative way to
simultaneously hedge its different financial risk exposures: commodity
price risk, exchange rate risk and interest rate risk. In the following, St 
denotes the value of the commodity at time t, δt is its
continuously-compounded convenience yield at time t, Ct  is the value
at time t of one unit of the foreign currency expressed in the domestic
currency, P(t,T1)  is the time-t value of a zero-coupon bond paying one
unit of the domestic currency at time T1, P*(t,T2)  is the time-t value of
a foreign zero-coupon bond paying one unit of the foreign currency at
time T2. The firm's financial assets dynamics under the historical
probability measure P are given by the following stochastic differential
equations2  (SDE hereafter):

(1a)( ) ( )1 ,t t s t s tdS S dt dWα δ σ⎡ ⎤= − +⎣ ⎦

(1b)( ) ( )1 ,t t td dt dWδδ κ θ δ σ= − +

(1c)( )2 ,t t c c tdC C dt dWα σ⎡ ⎤= +⎣ ⎦

( ) ( ) ( )1

1 1 1

1

, 3
1 1 , , ,

,

, , ,t T
t t T t T t T t

t T

dP t T P t T r dt dW
γ

β β β
η

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟= − − −⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

(1d)10 ,t T≤ ≤

( ) ( ) ( )2

2 2 2

2

*
, 4* * * * * *

2 2 , , ,*
,

, , ,t T
t t T t T t T t

t T

dP t T P t T r dt dW
γ

β β β
η

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟= − − −⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

(1e)20 .t T≤ ≤

2. In this setting, the convenience yield and the commodity price share the same source
of risk to ensure the market completeness. For more details, see Dionne, Gauthier and
Ouertani (2008).
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The expressions for the bond prices are obtained from the domestic and
the foreign instantaneous forward rates:

(1f)( ) ( )
1 1

3
1 , , 1, , 0 ,t T t T tdf t T dt dW t Tγ η= + ≤ ≤

(1g)( ) ( )
2 2

4* * *
2 , , 2, , 0 ,t T t T tdf t T dt dW t Tγ η= + ≤ ≤

in which the volatility parameters  and are deterministic
1,t Tη

2

*
,t Tη

functions of time t and maturity. Consequently, 
1

1 2

*
, , ,,

T

t T t s t T

t

dsβ η β= =∫
and  are respectively the continuously-

2

*
,

T

t s

t

dsη∫ ( ) ( )* *, , ,t tr f t t r f t t= =

compounded domestic and foreign risk-free spot interest rates. The drift

terms  and  are not specified since they do not  appear in the
1,t Tγ

2

*
,t Tγ

pricing formulae. The four-dimensional Brownian motion 

 is constructed on a filtered probability( ) ( ) ( ) ( )( )1 2 3 4, , ,W W W W W
′=

space  with the following correlation structure:{ }( ), , : 0 ,t t PΩ ≥F F

, for each and ( ) ( )( ) ,,i jP
t t i jCorr W W ρ= { }, 1,2,3,4i j = 0.t >

Consider a European call option that gives the firm the right to buy a
basket consisting of the commodity, the domestic zero-coupon bond and
the foreign zero-coupon bond expressed in domestic currency units, at
a strike price KB . Its payoff at maturity T is given by:

[ ]max ,0 ,B T BX B K= −

where the basket value at time t is  ( )1 2 1,t tB w S w P t T= + +
, w1, w2 and w3 correspond to the( )*

3 2 1 2, , 0 ,tw C P t T t T T T≤ ≤ ≤
numbers of shares invested respectively in the commodity ST, the
domestic zero-coupon bond P(T,T1)  and the foreign zero-coupon bond
expressed in domestic currency units CTP

*(T,T2). Since the proposed
market model is complete,3 Harrison and Pliska (1981) allows the
pricing of any contingent claim as the expectation of the discounted
payoff under the risk-neutral measure Q. Consequently, the price of the

3. The derivation of the unique risk-neutral measure is available upon request.
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European call option at time t is given by:

( )exp max ,0
T

B Q
t u T B t

t

V E r du B K
⎡ ⎤⎛ ⎞

= − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫ F

( ) ( ), max ,0TQ
T B tP t T E B K= ⎡ − ⎤⎣ ⎦F

(2)( ) ( ) ( ), max ,0 ,BP t T x K v x dx
+∞

−∞

= −∫

where v(x) is the true (unknown) density function of the basket value BT 
under the T–forward measure QT. This forward measure has a

Radon-Nikodym derivative with respect to Q denoted by  , and itsTdQ

dQ
associated Q – martingale is given by:

exp

.
( , )

T

u

tQ T
t t

r du
dQ

dQ P t T
ζ

⎛ ⎞
−⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠= Ε =⎜ ⎟

⎝ ⎠

∫
F

The SDEs satisfied by the basket underlying assets under the T–forward
measure QT is given in appendix A, and its strong solution is obtained
for any  as:0 t T≤ ≤
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(3c)( )
2

2*
2,3 ,

ˆexp ,
2

T T
c

T t u u c u T c u

t t

C C r r du dW
σ σ ρ β σ

⎛ ⎞⎛ ⎞
= − − − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫ ∫

( ) ( ) ( )
1 1 1

32
1 1 , , , ,

1 ˆ, , exp ,
2

T T

u u T u T u T u T u

t t

P T T P t T r du dWβ β β β
⎛ ⎞⎛ ⎞= − + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫ ∫

(3d)

( )*
2,P T T =

(3e)( )
( )

( )

2 2 2

2

2* * * *
, 2,4 , 3,4 , ,

*
2

4*
,

1

2
, exp ,

ˆ

T

u u T c u T u T u T

t

T

u T u

t

r du

P t T

dW

β σ ρ β ρ β β

β

⎛ ⎞⎛ ⎞− + +⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟

⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

∫

∫

where is a four-dimensional QT – Brownian( ) ( ) ( ) ( )( )1 2 3 4ˆ ˆ ˆ ˆ ˆ, , ,W W W W W
′=

motion with the same correlation structure .( )( ) ,
ˆ ˆ,T iQ j

t t i jCorr W W ρ=
The evaluation of the basket call option is complicated by the

absence of a closed-form equation for the density function v(x) in
equation (2). Among the different approaches proposed in the basket
options literature, we find some numerical techniques such as Monte
Carlo, Quasi-Monte Carlo and lattice-based method, the upper and
lower bound computations, and some analytical approximations.4

Lattice-based approaches are widely used for options on a single
asset. They are exponentially complicated and computationally
expensive for options on multiple assets. For example, a three-asset
basket option needs (n+1)3 terminal nodes on an n-step trinomial tree.
On the other hand, Monte Carlo and Quasi-Monte Carlo methods can be
used for multi-assets options and are less time-consuming than lattice-
based approaches. The estimates can be as accurate as needed at a
computational cost however; to improve the accuracy of an n-path
simulation by one half, one needs to simulate 4n paths and thus needs
4 times more computing time.

A practitioner might be interested in slightly less accurate but very

4. The upper and lower bounds methods are not useful in this case since the market
model proposed is complete and thus a unique option price can be computed.
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fast methods such as analytical approximations. These methods
approximate the unknown basket density function with an alternative
and easy-to-compute distribution. In the next sections, three well-known
analytical approximations will be extended to heterogeneous basket
options: the inverse gamma distribution, the Edgeworth expansion
around the lognormal distribution and Johnson distribution.

III. Analytical Approximations

In order to apply these moment matching-based approximations, we
need to calculate the first four moments of the weighted sum underlying
the European option under the T-forward measure QT. The following
notations are adopted:

(4a)( ) ( ) ,n
n h x h x dxμ

+∞

−∞

′ = ∫

(4b)( ) ( )( ) ( )1 ,
n

n h x h h x dxμ μ
+∞

−∞

′= −∫

where and represent respectively the nth non-centered and( )n hμ′ ( )n hμ
centered moments of a density function . The case h = v{ },h v a∈
corresponds to the exact density of the basket value under the forward
measure, while h = a corresponds to the approximate density. The first
four cumulants of the distribution h, i.e. the mean, the variance, the
skewness and kurtosis are defined as:

(5a)( ) ( )1 1 ,h hκ μ′=

(5b)( ) ( )2 2 ,h hκ μ=

(5c)( ) ( )3 3 ,h hκ μ=

(5d)( ) ( ) ( )4 4 23 .h h hκ μ μ= −
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Lemma 1: For any positive integer n, the nth non-centered moment of the
true distribution of the weighted sum BT under the T-forward measure
QT is

( ) ( ) ( )( )*
1 2 1 3 2, ,T T

nQ Qn
n T T Tv E B E w S w P T T w C P T Tμ ⎡ ⎤′ ⎡ ⎤= = + +⎣ ⎦ ⎢ ⎥⎣ ⎦

( ) ( )
( ) ( ) ( )( )( )

1 2 3 1
0 0

!
,

! ! !
T

n k
k jk j n k Qj j

T
k j

n
w w w E S P T T

j k j n k

−− −

= =

⎡= ⎢⎣− −∑∑

( )( )2* , .
n kn k

TC P T T
−− ⎤
⎥⎦

Note that the lognormal distribution of ST, P(T,T1), CT, and P*(T,T2)
under the forward measure allows the computation of the last
expectation in lemma 1 by using the following identity:

where Z ~ N(0,1).( )
2

exp exp
2

E
σμ σ μ

⎛ ⎞
+ Ζ = +⎡ ⎤ ⎜ ⎟⎣ ⎦

⎝ ⎠

Details are given in appendix B.

A. Inverse Gamma Approximation

In this section, the inverse gamma distribution is used to approximate
the sum of correlated lognormal variables. The approximation was first
used by Milevsky and Posner (1998a, 1998b) to price Asian and basket
options. In fact, a sum of correlated lognormal variables converges
asymptotically to an inverse gamma variable. Under an inverse gamma
distribution for the underlying basket, a European basket call option has
a closed-form solution that looks like a Black and Scholes (1973) (B&S
hereafter) formula:

(6)( ) ( )1

1 1
, 1, , ,B

gamma B
B B

V P t T v G K G
K K

μ α β α β
⎛ ⎞⎛ ⎞ ⎛ ⎞

′= − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

where is the cumulative function of a gamma distribution( ),G α β•
with parameters . These parameters are determined by matching( ),α β
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the first two moments of the exact and the approximate distributions to
obtain:

 and (7)
( ) ( )
( ) ( )

2
1 2

2
1 2

2v v

v v

μ μ
α

μ μ
′ ′−

=
′ ′−

( ) ( )
( ) ( )

2
2 1

1 2

.
v v

v v

μ μ
β

μ μ
′ ′−

=
′ ′

Mathematical details of the pricing formula are provided in appendix C.

B. Edgeworth Expansion Around the Lognormal Distribution

We now present an analytical approximation based on a generalized
Edgeworth expansion around the lognormal distribution. This approach,
introduced by Jarrow and Rudd (1982) in option pricing, substitutes an
unknown density function v(!) with a Taylor-like expansion around an
easy-to-use density function denoted by a(!). Note, however, that
Edgeworth expansions usually lead to a function which is not a true
density function. Barton and Denis (1952) derive some conditions on
the third and fourth moments of the unknown distribution to guarantee
that the approximation obtained with a truncated Edgeworth expansion
is positive and unimodal.

Moreover, Ju (2002) points out that the Edgeworth expansion may
diverge for some parameter values, which consequently can give
incorrect prices for high volatility and long maturity options. However,
in this article the use of the Edgeworth expansion did not lead to this
problem.

Following Huynh (1994) who uses this approach for basket options,
an Edgeworth expansion of order 4 is used and the first two moments
of the exact and the lognormal distributions are matched. Under this
approximation, a European basket call option can be obtained as a Black
and Scholes price adjusted for the excess skewness and the excess
kurtosis from the lognormal density:

( ) ( ) ( ) ( )3 3
log normal ,

3!
BB v a da K

V P t T V
dx

κ κ−⎡
= −⎢

⎣

(8a)
( ) ( ) ( )2

4 4
2

,
4!

Bv a d a K

dx

κ κ ⎤−
+ ⎥

⎦
where

(8b)( ) ( ) ( )1 2 ,BV v N d K N dμ′= −
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(8c)1 2 ,d d β= +

(8d)
( )

2

ln
,BK

d
α

β
−

=

(8e)( )( ) ( )( )2 2
1 1 2

1
ln ln ( ) ,

2
v v vα μ μ μ′ ′= − +

(8f)( ) ( )( )( )2

2 1ln 1 ,v vβ μ μ −′= +

a(!) is the density function of a lognormal distribution (see equation
(19) in appendix D), and N(!) represents the cumulative function of the
standard normal distribution. The third and fourth moments of the
lognormal distribution needed for the Edgeworth expansion depend only
on the first and second moments of the exact distribution and are given
by:

 and (8g)( ) ( )
( )

3

2
3

1

v
a

v

μ
μ

μ
⎛ ⎞′

′ = ⎜ ⎟⎜ ⎟′⎝ ⎠
( ) ( )

( )

6

2
4 8

1

.
v

a
v

μ
μ

μ
′

′ =
′

Details about the Edgeworth approximation formula are given in
appendix D.

C. Johnson Approximation

Johnson (1949) proposes a family of density functions, obtained via a
transformation of a standard normal variable that can be used to
approximate unknown distributions. Let Z be a standard normal variable
and X be a random variable with an unknown density function, Johnson
(1949) suggests the following transformations between Z and X:

(9a),
X

Z
εγ δψ

λ
−⎛ ⎞= + ⎜ ⎟

⎝ ⎠

(9b)1 ,
Z

X
γε λψ

δ
− −⎛ ⎞= + ⎜ ⎟
⎝ ⎠
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where γ and δ are the shape parameters of the Johnson distribution, λ is
the scale parameter, g is the threshold parameter, and ψ(!) is one of the
following Johnson functions:

Lognormal system: (10a)( ) ( )ln ,L x xψ =

Unbounded system: (10b)( ) ( )2ln 1 ,U x x xψ = + +

Bounded system: (10c)( ) ln .
1B

x
x

x
ψ ⎛ ⎞= ⎜ ⎟−⎝ ⎠

The choice of the system and fitting parameters provides a great
flexibility in adjusting the curve to match the first four moments of the
unknown distribution. We use the lognormal (ψL) and the unbounded
(ψU) systems that are common in the literature. The Hill, Hill and
Holder (1976) algorithm, based on the true skewness and kurtosis of the
basket distribution, is applied to determine which of the Johnson
systems (ψL or ψU) should be used in the approximation. Unlike the
approximations obtained with a truncated Edgeworth expansion, those
based on Johnson (1949) systems correspond to true density functions
with a perfect match of the first four moments.

Following Posner and Milevsky (1999), we substitute the unknown
distribution of the underlying basket with the lognormal and the
unbounded Johnson functions where the system parameters are
calculated by matching the four moments. Under a Johnson density
function, a European basket call option can be priced as:

( ) ( ) ( )
0

,B
Johnson BV P t T x K x dxψ

+∞

= −∫

( ) ( ) ( ) ( ) ( )
0 0 0

,
BK

B BP t T x x dx K x dx x K x dxψ ψ ψ
+∞ +∞⎛ ⎞

= − − −⎜ ⎟⎜ ⎟
⎝ ⎠
∫ ∫ ∫

(11)( ) ( ) ( )1
0 0

,
BK x

BP t T v K y dy dxμ ψ
⎛ ⎞⎛ ⎞

′= − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫ ∫
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( ) ( ) ( )1
0

, .
BK x

BP t T v K y dy dxμ ψ
−∞

⎛ ⎞⎛ ⎞
′≅ − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫ ∫

The third line in the equation is obtained using an integration by parts.
Milevsky and Posner (1999) show that the last double integral,
involving a Johnson density function, can be computed as follows:

1. Lognormal system ψL : exp
Z

X
γε λ

δ
−⎛ ⎞= + ⎜ ⎟

⎝ ⎠

( ) ( )
0

ln
BK x

B
B

K
y dy dx K N

εψ ε γ δ
λ−∞
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2. Unbounded system ψU : sinh
Z

X
γε λ

δ
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⎝ ⎠

( ) ( ) ( ) 2
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1 1
exp exp
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λ γψ ε
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⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ ∫

(13)
2

1 1
exp exp ,

2 2
N q

λ γ
δ δ δ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

51where  sinh .BK
q

εγ δ
λ

− −⎛ ⎞= + ⎜ ⎟
⎝ ⎠

5. Notice that  and thus  ( ) ( ) ( )exp exp
sinh

2

x x
x

− −
= ( )1sinh x− =

.( ) ( )2ln 1 Ux x xψ+ + =
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D. Performance analysis of Approximations

In this section, the performance of the three approximations presented
previously is analyzed. The prices obtained by Monte Carlo simulations
are used as benchmarks since there is no closed-form solution for basket
options. Following Barraquand (1995), a variance reduction technique
based on the matching of the first and second moments will be used.
This will ensure that the sample mean and variance are equal to their
theoretical counterparts. The Monte Carlo basket option price combined
with the variance reduction technique is given by:

( ) ( )*
0 ,

1

1
0, max ,0

N
B

i T B
i

V P T B K
N =

= −∑

where ( ) ( ) ( )* 1
, , 2 1

ˆ ,i T i TB B B v S vμ μ− ′= − +

Bi,T is the time-T basket value obtained with sample path i, 

TABLE 1. Parameters Used in the First Sensitivity Analysis

Domestic risk-free rate,  f (0,t) = f  for any t 0.06
Foreign risk-free rate,  f  *(0,t) = f * for any t 0.05
Commodity drift, αs 0.15
Exchange rate drift, αc 0.04
Commodity volatility, σs 0.15
Exchange rate volatility, σc 0.06

Domestic instantaneous forward rate volatility, for any t and T1 0.01
1,t Tη η=

Foreign instantaneous forward rate volatility, for any t and T2 0.01
2

* *
,t Tη η=

Convenience yield volatility, σδ 0.3
Convenience yield mean reversion parameter, κ 0.1
Convenience yield long-run mean, θ 0.15
Commodity and exchange rate correlation, ρ1,2 0.1
Commodity and domestic instantaneous forward rate correlation, ρ1,3 –0.2
Commodity and foreign instantaneous forward rate correlation, ρ1,4 –0.25
Exchange rate and domestic instantaneous forward rate correlation, ρ2,3 0.05
Exchange rate and foreign instantaneous forward rate correlation, ρ2,4 0.1
Foreign and domestic instantaneous forward rates correlation, ρ3,4 0.85
Basket weights (commodity, domestic and foreign zero-coupon bonds) 0.5; 0.25; 0.25
Initial values S0, C0 and δ0 $330; $/CAD 0.65; 0.2
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and  are respectively the sample,
1

1 m

i T
i

B B
m =

= ∑ 2 2
,

1

1 m

i T
i

S B B
m =

= −∑
basket mean and standard deviation and m is the number of simulated
paths.

The performance study will be conducted with two analyses. In the
first sensitivity analysis, the basket option price obtained with the
analytical approximations will be compared to the Monte Carlo price
obtained with 1,000,000 paths repeated for different maturities, different
moneynesses and different levels for the basket volatility. The second
sensitivity analysis is a more detailed analysis based on works done by
Broadie and Detemple (1996). It computes the option prices over a wide
range of parameters chosen randomly from a realistic set of values in
order to generalize the previous results independently of the model’s
parameters. For each combination, the prices obtained with the
approximations and Monte Carlo simulations are compared.

Table 1 presents the set of parameters used in the first analysis.
These values are based on estimations using real data on gold prices,
USD/CAD exchange rate and Canadian and American 3-month zero-
coupon bonds. Although the correlations in the set of parameters take
both positive and negative values, the volatility of the basket will
increase when individual assets volatilities increase.

Table 2 presents the sensitivity analysis of the basket option price
with respect to moneyness, i.e. the ratio of the exercise price to the

initial value of the basket , and option maturity. The results show
0

BK

B
that Edgeworth-lognormal and Johnson approximations are much more
accurate, with relative errors between 10–6 and 10–3, than the inverse
gamma approximation with a relative error between 10–4 and 10–1.6

Table 3 presents the sensitivity analysis of the basket option price
with respect to the basket volatility and option maturity, for
in-the-money options with a moneyness of 0.95. The average level
volatility corresponds to the values in table 1, while high and low levels
correspond respectively to an increase and a decrease of 50% in the
volatility values given in table 1.

The findings are similar to those in table 2. The relative errors

6. This result is consistent with Milevsky and Posner (1998a) who showed that the
convergence result for the inverse gamma works well when the risk-neutral drift of the
underlying diffusion is negative or when the correlation matrix decays quickly.
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presented in table 3 are very low with a magnitude between 10–6 and
10–2. For low volatility levels, Edgeworth-lognormal and Johnson
approximate prices and Monte Carlo prices are very close. As for the
inverse gamma approximation, the results show that it is much less
accurate with relative errors between 10–4 and 10–2. Note that the
accuracy of the three approximations decreases for longer maturities
and higher volatilities, which supports the findings in Ju (2002).7

TABLE 4. Parameters Distributions

Domestic risk-free rate,  f (0,t) = f  for any t U([0.02; 0.08])
Foreign risk-free rate,  f  *(0,t) = f * for any t U([0.02; 0.08])
Commodity drift, αs U([0.05; 0.35])
Exchange rate drift, αc 0.04
Commodity volatility, σs U([0.1; 0.35])
Exchange rate volatility, σc U([0.02; 0.15])
Domestic instantaneous forward rate volatility, 

1,t Tη η=
for any t and T1 U([0.001; 0.06])

Foreign instantaneous forward rate volatility,
2

* *
,t Tη η=

for any t and T2 U([0.001; 0.06])
Convenience yield volatility, σδ U([0.1; 0.4])
Convenience yield mean reversion parameter, κ U([0.05; 0.8])
Convenience yield long-run mean, θ U([0.05; 0.5])
Commodity and exchange rate correlation,  ρ1,2 U([0.01; 0.55])
Commodity and domestic instantaneous forward rate correlation, ρ1,3 U([–0.5; 0.25])
Commodity and foreign instantaneous forward rate correlation, ρ1,4 U([–0.5; 0.25])
Exchange rate and domestic instantaneous forward rate correlation,
ρ2,3 U([–0.35; 0.35])

Exchange rate and foreign instantaneous forward rate correlation,
ρ2,4 U([–0.35; 0.35])

Foreign and domestic instantaneous forward rates correlation, ρ3,4 U([0.15; 0.9])
Option maturity (in years) U({0.083; 0.25;

0.5; 0.75; 1; 1.5; 2; 3})
Moneyness U({0.8; 0.9; 0.95;

1; 1.05; 1.1; 1.2})
Basket weights (commodity, domestic and foreign zero-coupon bonds)

1 1 1 1 1 1
, , , ; , , ;

3 3 3 2 4 4
1 1 1 1 1 1

, , , ; , ,
4 2 4 4 4 2

U

⎛⎛ ⎞ ⎛ ⎞ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟
⎛ ⎞ ⎛ ⎞⎜ ⎟
⎜ ⎜ ⎟ ⎜ ⎟ ⎟
⎝ ⎝ ⎠ ⎝ ⎠ ⎠

Initial Values S0, C0 and δ0 $330; $/CAD 0.65; 0.2

7. Ju (2002) proposes an analytical approximation to price Asian and basket options
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Moreover, for all approximations, option prices increase with maturity
and volatility.

The previous analysis is only local and the findings depend on the
set of parameters used and may change if the parameters values are
modified. To confirm these conclusions, a more carefully designed
numerical study where the parameters are randomly chosen is
conducted. Following Broadie and Detemple (1996), the significant
model parameters are chosen randomly from continuous and discrete
uniform distributions. These uniform distributions are based on the
estimation of the model parameters using real data. The correlation
between the commodity and the exchange rate is expected to be
positive, and so it is assumed that ρ12 0 [0.01, 0.55]. Based on Schwartz
(1997), the convenience yield long-run mean is positive for gold and the
mean reversion parameter is small and less than 1; it is therefore
assumed that  θ 0 [0.05,0.5] and κ 0 [0.05,0.8]. All parameter
distributions used in the pricing are presented in table 4.

The three previous analytical approximations and Monte Carlo
simulation combined with the variance reduction technique are
compared for 5,000 random sets of parameters. Only 4,347 sets of
parameters are left after non-positive definite correlation matrices and
basket option prices lower than 5 cents are removed from the sample.
First, the accuracy of each approximation is examined by calculating its
root mean squared error (RMSE). Second, the maximum relative error
(MRE) is computed for each approximation to examine the worst case
scenario. More precisely, we define,

TABLE 5. RMSE and MRE for the Three Approximations

Inverse Gamma Lognormal Johnson
Approximation Approximation Approximation

RMSE 9.68% 0.52% 0.56%
MRE 79.47% 13.16% 14.00%

based on a Taylor expansion of the ratio of the characteristic function of the average of
lognormal variables to that of the approximating lognormal random variable around zero
volatility.
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FIGURE 1.— Histogram of Relative Errors of the Inverse Gamma
Approximation
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where n = 4,347 is the number of the different sets of parameters, and ( )B
iV a

and  correspond respectively to the approximate and Monte CarloB
iV

prices for parameters set i. Monte Carlo prices are obtained with
1,000,000 paths combined with the variance reduction technique.

The results in table 5 confirm those obtained with the first sensitivity
analysis (tables 2 and 3) and show that the Edgeworth-lognormal and
Johnson approximations are much more accurate than the inverse
gamma approximation. It is also found that, for the
Edgeworth-lognormal and Johnson approximations, a very small
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FIGURE 2.— Histogram of Relative Errors of the Edgeworth
Approximation

proportion of options, 0.23% and 0.35% respectively, have relative
errors above 5% while for the inverse gamma approximation a larger
proportion, 27.74%, of options have a relative error above 5%.

A more detailed look at the results shows that out-of-the-money and
high volatility options have the largest relative errors, which confirms
our findings in the first sensitivity analysis. However, since the
out-of-the-money options have small prices, the augmentation of the
relative errors in these cases may be attributed to the small
denominators. Figures 1, 2 and 3 present respectively the histograms of
the relative errors for the inverse gamma, the Edgeworth-lognormal and
Johnson approximations. Table 6 shows a summary of descriptive
statistics of the relative errors.

The histograms show that for the Edgeworth-lognormal and Johnson
approximations, 99% of parameters sets (4,300 out of 4,347) have
relative errors less than 2%. This demonstrates that these
approximations are very accurate and that they give prices very close to
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FIGURE 3.— Histogram of Relative Errors of Johnson
Approximation

Monte Carlo benchmarks. For the inverse gamma approximation, 92% 
(4,000 out of 4,347) of the cases have relative errors less than 20%. The
same results are found by using larger and more general intervals for the
parameters distributions.

To summarize this section regarding the pricing of heterogeneous
basket options, it is found that the Edgeworth expansion around the
lognormal distribution at order 4 and the Johnson distribution are
equally accurate and very acceptable to practitioners. However, the use
of the Edgeworth-lognormal distribution may be preferred for two
reasons: first, it is slightly more accurate, and second, the algorithm to
calibrate Johnson distributions may not converge in a few cases, which
can lead to mispriced options.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

500

1000

1500

2000

2500

3000

3500

4000

4500

X-axis represents relative errors

Y-axis represents the number of observations



72 Multinational Finance Journal

V. Extensions

A. Hedging Ratios

The analytical approximations allow for deriving the option price in a
functional form which can also provide analytical expressions for the
sensitivities with respect to the underlying parameters, such as deltas,
vegas and theta, known as the hedging ratios or the Greeks. However,
due to the complexity of the moments involved in our analytical
approximations, deriving the hedging ratios analytically is beyond the
scope of this article. Instead, they can be computed numerically as
follows:

(14)
( )B B

App AppB
App

V V
Ratio

ε

ε
−

=

where ε > 0 is a small number,  and  are respectively the( )B
AppV ε B

AppV
approximate ε-disturbed and non-disturbed option prices. As an
application, the delta with respect to the commodity price is computed
numerically for different values of ε. Table 7 presents the calculations
for a 9-month in-the-money call basket option (moneyness 0.95) using
the parameters in table 1.

It is shown that for the three approximations, the delta is very stable
over different values of ε. Indeed, an increase of $1 in the commodity
price leads to an increase of approximately $0.01 in the option price.
The positiveness of delta is expected but its value depends on the set of
parameters used. Other sensitivities with respect to other parameters of
interest can be computed with the same procedure.

TABLE 6. Descriptive Statistics of Relative Errors

Inverse Gamma Lognormal Johnson
Approximation Approximation Approximation

Maximum 0.7947 0.1316 0.1400
Minimum 0 0 0
Mean 0.0493 0.0015 0.0014
Median 0.0136 0.0002 0.0001
Standard Deviation 0.0833 0.0050 0.0054
Nb of Observations 4347 4347 4347
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B. Stochastic Volatility

Many recent empirical studies show that models incorporating
stochastic volatility and jumps capture some well-known stylized facts,
such as volatility smile, fat tails, and large moves (see Heston (1993),
Bakshi, Cao and Chen (1997), and Bakshi, Carr and Wu (2006)).
However, the high-dimensionality and the heterogeneous character of
this model makes it difficult to extend it to a more general and flexible
framework. The following are some thoughts on the various extensions
that can refine the model to account for these empirical findings in
option pricing literature.

In this model, the basket price depends on four correlated assets
modeled with five diffusion processes, namely the commodity price and
its convenience yield, the exchange rate, the domestic and the foreign
zero-coupon bonds. Adding very general stochastic volatility/jump
processes will obviously make the model intractable and not
parsimonious. It will certainly be impossible to derive similar analytical
approximations as the basket moments cannot be obtained in
closed-form solutions. However, if we assume that the stochastic
volatility processes are not correlated with their corresponding assets
and with each other,8  we can assume a multi-dimensional version of the
Hull and White (1987) stochastic volatility model or the multivariate
Wishart process in Gourieroux and Sufana (2004) to price the proposed

TABLE 7. Basket Option Delta w.r.t. the Commodity Price

Commodity Inverse Gamma Lognormal Johnson
Price Approximation Approximation Approximation

Price Delta* Price Delta* Price Delta*

$330 3.1890 3.1879 3.1879
$330.33 3.1922 0.0097 3.1910 0.0094 3.1911 0.0097
$331.65 3.2049 0.0096 3.2037 0.0096 3.2038 0.0096
$333.30 3.2208 0.0096 3.2196 0.0096 3.2196 0.0096
$334.95 3.2367 0.0096 3.2355 0.0096 3.2355 0.0096

Note:  Delta corresponds to the sensitivity with respect to the commodity price and is

given by equation (14). , presented in the first row of the table, is the analytical basketB
AppV

option price obtained for a commodity price of $330

8. Many empirical studies show that the volatility smile is symmetric in Forex and
interest rates markets and thus the correlation between the volatility and these types of assets
can be considered as zero.
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heterogeneous basket option.9  More precisely, the density function of
each of the basket components can be approximated by conditioning on
its volatility path. In doing so, a stochastic volatility diffusion can be
replaced by a constant volatility diffusion where the constant diffusion
parameter is given as the square root of the average variance over the
option's life (see Sabanis (2003) and Tahani (2005)). The basket
moments under the multi-dimensional stochastic volatility framework
can be approximated and therefore the analytical moment-matching
approximations derived. These approximations under a stochastic
volatility framework do not necessarily perform as well as under the
constant volatility framework; and need to be assessed using a robust
numerical analysis.

C. Implied Volatility

A recent paper by Bakshi and Madan (2006) analyses the difference
between physical and risk-neutral volatilities, known as volatility
spreads. Using the S&P 100 index options the authors confirm
empirically what the theory predicts: volatility spreads should be
positive. In this setting and assuming that basket option prices are
available from the market, we can easily use the analytical
approximations to infer the risk-neutral model parameters by
minimizing the quadratic error between the theoretical and the market
prices. This calibration should be much faster with the analytical
approximations than with Monte Carlo simulations or any other
numerical technique such as finite differences. On the other hand, the
physical model parameters can be simply inferred from the prices of the
assets underlying the basket, i.e. the commodity, the exchange rate, and
the interest rates. Finally, once the parameters are estimated under both
the physical and the risk-neutral measures, one can easily analyze the
differences between the physical and the risk-neutral basket volatilities
and skewness in light of Bakshi and Madan (2006) work.

D. Optimal Portfolio Selection

The analytical approximations derived under the T–forward measure QT 
for the purpose of basket options pricing can be adapted to derive the
optimal portfolio, i.e. the optimal numbers of shares invested in each of
the basket components. Indeed, using the appropriate moments for the

9. Note that some jumps may need to be added.
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basket value under the physical measure P and assuming that the
approximate densities will still perform well under this measure, one
can approximate the expected utility of the basket.10 Using the Johnson
distribution for example, we have

( )
2

1 1
exp ,

22
P

T

z z
E U B U dz

γε λψ
δ π

+∞
−

−∞

⎛ ⎞⎛ − ⎞⎛ ⎞= + −⎡ ⎤ ⎜ ⎟⎜ ⎟⎜ ⎟⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎝ ⎠
∫

where U(!) is the utility function and ψ(!) is defined in equations (10).
Depending on the choice of U and ψ, this expectation can be computed
analytically, yielding an expression that will depend on the utility
parameters and Johnson parameters (ε,λ,γ,δ). Since Johnson parameters
are obtained by matching the first four moments of the basket, the
expected utility can be seen as a highly non-linear function of the
numbers of shares w1 ,w2  and w3. Although, in practice, these weights
are usually determined by the firm's production, its debt structure, and
its liquidity needs, it can be interesting to obtain them by maximizing
the expected utility EP[U(BT)]. This optimization will most likely be
performed numerically and may be subject to many local optima. Note
also that the optimal weights will depend on the choice of the utility
function.

VI. Conclusion

Firms can use basket options to hedge their exposure to different risks,
such as commodity risk, interest rate risk and exchange rate risk.
However, pricing this kind of options is not an easy task since no
closed-form solution can be derived for the basket density function.
Consequently, a standard pricing formula such as Black and Scholes
cannot be derived. The main contribution of this article is the
comparison of the performance of three analytical approximations to
price a heterogeneous basket option, consisting of a commodity, a
domestic and a foreign zero-coupon bonds, when interest rates are
stochastic. The three approximations used are the inverse gamma
proposed in Milevsky and Posner (1998a, 1998b), the Edgeworth
expansion around the lognormal distribution as well as Johnson

10. The best approximate density will be assessed numerically using Monte Carlo
simulations for a large pool of parameters
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distribution developed in Posner and Milevsky (1999).
In order to assess and compare the accuracy of the approximations,

two analyses are conducted. The first one is a local sensitivity analysis
where the parameters of the model are fixed arbitrarily. The second one
is based on a random choice of parameters. The findings show that both
the Edgeworth-lognormal and Johnson approximations are very accurate
while the inverse gamma approximation is much less accurate.

Accepted by:   Prof. P. Theodossiou, Editor-in-Chief, January 2008

Appendices

A. Derivation of the Forward Measure

In this appendix, we will derive the model under the T-forward measure.
Let Ai be the ith row of the matrix A, where  is the( ) { }, 1,2,3,4ij i j

a
=

Α =
Cholesky decomposition of the correlation matrix of the four-
dimensional P-Brownian motion , and ( ) ( ) ( ) ( )( )1 2 3 4, , ,W W W W W ′=

corresponds to the vector of independent Brownian motions under Q.Β
The SDEs satisfied by all underlying assets under Q can be written as:11

(15a)( ) 1t t t t s tdS S r dt dδ σ⎡ ⎤= − + Α Β⎣ ⎦

(15b)( ) 1t s t t t
s

d r dt dδ
δ

σδ κθ α κδ σ
σ

⎛ ⎞
= − − − + Α Β⎜ ⎟
⎝ ⎠

(15c)( )*
2t t t t c tdC C r r dt dσ⎡ ⎤= − + Α Β⎣ ⎦

(15d)( ) ( )
11 1 , 4, , t t T tdP t T P t T r dt dβ⎡ ⎤= − Α Β⎣ ⎦

(15e)( ) ( ) ( )
2 2

* * * * *
2 2 , 2,4 , 4, , t t T c t T tdP t T P t T r dt dβ σ ρ β⎡ ⎤= + − Α Β⎣ ⎦

11. The details of the computation are available from the authors upon request.
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The risk-neutral Q corresponds to a numeraire equal to the domestic

bank account , while the T-forward measure QTexp
T

u

t

r du
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∫

corresponds to a numeraire equal to the domestic zero-coupon bond

with maturity date T, P(t,T). Using Girsanov theorem, we have that:

, 3
ˆ

t t t Td d dtβ ′Β = Β + Α

where are independent Brownian motions under QT. The correlationΒ̂
structure is the same under Q and QT, and the previous SDE’s can be
rewritten as:

(16a)( ) ( )1
1,3 ,

ˆ
t t t t s t T s tdS S r dt dWδ ρ σ β σ⎢ ⎥= − − +⎣ ⎦

(16b)( ) ( )1
1,3 ,

ˆ
t s t t t T t

s

d r dt dWδ
δ δ

σδ κθ α κδ ρ σ β σ
σ

⎛ ⎞
= − − − − +⎜ ⎟
⎝ ⎠

(16c)( ) ( )2*
2,3 ,

ˆ
t t t t c t T c tdC C r r dt dWρ σ β σ⎢ ⎥= − − +⎣ ⎦

(16d)( ) ( ) ( ) ( )
1 1

3
1 1 , , ,

ˆ, , t t T t T t T tdP t T P t T r dt dWβ β β⎢ ⎥= + −⎣ ⎦

( ) ( ) ( ) ( )
2 2 2

4* * * * * *
2 2 , 2,4 3,4 , , ,

ˆ, , t t T c t T t T t T tdP t T P t T r dt dWβ σ ρ ρ β β β⎢ ⎥= + + −⎣ ⎦
(16e)

where  The strong solution exists and( ) ( ) ( ) ( )( )1 2 3 4ˆ ˆ ˆ ˆ ˆ, , , .W W W W W AB
′= =

is given by the system equation (3).

B. Derivation of Moments

This appendix gives the detailed calculation of the first four moments
of the basket value at maturity T under the T–forward measure QT.
Using the strong solution of the model under the forward-measure QT,
one can write:
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where
( ) ( ) ( ) ( ) ( ) ( )*jk S P PT j T k j T n k Tφ φ φ φ= + − + −

( ) ( ) ( ) ( ) ( ) ( ) { }, , *, , 1,2,3,4 .ijk S i P i P it j t k j t n k t iψ ψ ψ ψ= + − + − ∈

Table 8 presents the theoretical first four moments, calculated as
explained previously, and those obtained by Monte Carlo simulation.
This ensures that our theoretical formulas give the exact moments.

C. Inverse Gamma Approximation

This appendix shows how we obtain the pricing formula using the
inverse gamma approximation. The density function of a gamma
random variable X of parameters is given by:( ) ( ), , ~ , ,X Gα β α β

( ) ( )

1 exp

, , 0

x
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g x x
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where and is the Gamma function.0, 0α β> > ( )αΓ
Proposition 1: Let X be a gamma random variable with parameters

. Then, the random variable follows an inverse gamma( ),α β 1
Y

X
=

distribution, , and its density function is given by:( )~ ,RY G α β
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TABLE 8. Comparison of Theoretical and Simulated Moments

Order Theoretical Moments Simulated Moments

1 157.21 157.20
2 24807 24807
3 3.9293e+6 3.9292e+6
4 6.2472e+8 6.2470e+8
Mean 157.21 157.20
Variance 93.13 93.13
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Proposition 2: The non-centered moments of the random variable
are given by:( )~ ,RY G α β
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β α α α
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− − −

The basket option is priced by approximating the sum of lognormal
variables by an inverse gamma distribution. The first two moments are
matched to get the two parameters of the inverse gamma density given
by equation (7):
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Using the inverse gamma density, the option price ( ),P t T
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⎛ ⎞
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⎝ ⎠

∫ ∫

( ) ( )
1 1 1
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α β α β
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where we use . Equation (6) is( ) ( ) ( )1 1
, 1,

1
g y g y

y
α β α β

β α
= −

−
therefore obtained.

D. Edgeworth-lognormal Expansion

This appendix shows how we obtain the pricing formula using an
Edgeworth expansion around the lognormal distribution. Matching the
first two moments, the lognormal density used is given by:

(19)( )
2

1 1 1 1 1
exp

22

nx a
a x

xβ βπ

⎛ ⎞⎛ ⎞−⎜ ⎟= − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

where α and β are defined by equations (8e) and (8f) respectively.
Following Jarrow and Rudd (1982), the unknown basket density
function can be approximated by:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 3
2 2 3 3

2 32! 3!

v a d a x v a d a x
v x a x

dx dx

κ κ κ κ− −
= + −

(20)
( ) ( )( ) ( ) ( )( ) ( ) ( )

2 4
4 4 2 2

4

3

4!

v a v a d a x
x

dx

κ κ κ κ
ξ

− + −
+ +

where ξ(x) is an error term and  are the first four( ) { }, 1,2,3,4i h iκ =
cumulants of the density function defined by the system of{ },h v a∈
equations (5). Jarrow and Rudd (1982) state that, in general, there is no
bound on the error term resulting from an Edgeworth expansion.
Consequently, the error does not necessarily decrease with the
expansion’s order. Given that the first two moments are the same for the
true density and for the approximated density, equation (20) becomes:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 4

3 3 4 4
3 4

.
3! 4!

v a d a x v a d a x
v x a x x

dx dx

κ κ κ κ
ξ

− −
= − + +

(21)

Therefore the basket option price  can( ) ( ) ( ), max ,0BP t T x K v x dx
+∞

−∞

−∫
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be approximated by:

( ) ( ) ( ) ( ) ( ) ( )3
3 3

log 3
,

3!
B

B
normal B

K

v a d a x
V P t T x K a x

dx

κ κ+∞ ⎛ −
= − − +⎜⎜

⎝
∫

( ) ( ) ( )4
4 4

4
.

4!

v a d a x
dx

dx

κ κ ⎞−
⎟⎟
⎠

Using the fact that

 for ,( ) ( ) ( )
2

2

B

j j

B Bj j
BK

d a d a
x K x dx K

dx dx

+∞ −

−− =∫ 2j ≥

we obtain

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

3 3

log
2

4 4
2

3!
,

4!

B

B B
B K

normal

B

v a da
x K a x dx K

dx
V P t T

v a d a
K

dx

κ κ

κ κ

+∞⎡ ⎤−
− −⎢ ⎥

⎢ ⎥= ⎢ ⎥−⎢ ⎥+
⎢ ⎥⎣ ⎦

∫

(22)

Note that the integral in equation (22) is similar to Black and Scholes
price.
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