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This paper focuses on nominal exchange rates, specifically the US dollar
rate vis-à-vis the Euro and the Japanese Yen at a daily frequency. In the paper
both absolute values of returns and squared returns are modelled using
long-memory techniques, being particularly interested in volatility modelling
and forecasting. Compared with previous studies using fractional integration
such as Granger and Ding (1996), a more general model is estimated, which
allows for dependence not only at the zero but also at other frequencies. The
results show differences in the behaviour of the two series: a long-memory
cyclical model and a standard I(1) model seem to be the most appropriate for
the US dollar rate vis-à-vis the Euro and the Japanese Yen respectively. (JEL:
C22, O40)

Keywords: Fractional integration, Long memory, Exchange rates, Volatility 

I. Introduction

The empirical literature analysing the statistical properties of exchange
rates is vast. Most studies focus on the behaviour of real exchange rates
in order to establish whether it is consistent with the theory of
Purchasing Power Parity (PPP), which is one of the central tenets of the
theory of exchange rate determination. In particular, they test the null
hypothesis that the real exchange rate follows a random walk, the
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alternative being that PPP holds in the long run. However, such unit root
tests are now well known to have very low power unless very long spans
of data are used (see, e.g., Lothian and Taylor, 1996, and Cheung and
Lai, 1994). Moreover, whilst in a flexible-price monetary model PPP is
assumed to hold continuously, in a sticky-price model it holds only in
the long run. Therefore the relevant issue to investigate is whether
deviations from PPP are transitory or permanent. 

As a result of the increasing awareness of the limitations of standard
unit root tests as well as of possible frictions in foreign exchange
markets, long-memory and fractional integration methods have been
used much more frequently. For instance, applying R/S techniques to
daily rates for the British pound, French franc and Deutsche mark,
Booth et al. (1982) found positive memory during the flexible exchange
rate period (1973-1979) but negative one (i.e., anti-persistence) during
the fixed exchange rate period (1965-1971). Cheung (1993) also found
evidence of long-memory behaviour in foreign exchange markets during
the managed floating regime. On the other hand, the results obtained by
Baum et al. (1999) estimating an ARFIMA model for real exchange
rates in the post-Bretton Woods era do not support long-run PPP.

Other studies focus on the behaviour of nominal exchange rates. In
this case, the main motivation is often building a model with better
forecasting properties, rather than test theories of exchange rate
determination, and in particular the financial modelling and forecasting
of exchange rate volatility. This is because, from a dealer’s perspective,
what is of interest is not so much the ability to predict fluctuations in the
exchange rate level, but rather in its volatility. 

Some examples of recent studies analysing nominal exchange rate
dynamics using fractional integration (looking at futures in particular)
are those by Fang et al. (1994), Crato and Ray (2000) and Wang (2004).
Volatility dynamics in foreign exchange rates (mainly the Deutsche
mark vis-à-vis US dollar rate) have also been examined with the
FIGARCH-model, introduced by Baillie et al. (1996), and subsequent
papers using this approach are Andersen and Bollerslev (1997, 1998),
Tse (1998 – examining the Japanese Yen-US dollar rate), Baillie et al.
(2000), Kihc (2004) and Morana and Beltratti (2004 – analysing
volatility).

The present study also focuses on nominal exchange rates,
specifically the US dollar rate vis-à-vis the Euro and the Japanese Yen
at a daily frequency. Both absolute values of returns and squared returns
are modelled using long-memory techniques, being particularly
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interested in volatility modelling and forecasting. Compared with
previous studies using fractional integration such as Granger and Ding
(1996), a more general model is estimated which allows for dependence
not only at the zero but also at other frequencies.

The layout of the paper is the following. Section II describes the
methodology. Section III presents the empirical results. Section IV
examines the stability of the relationships over time. Section V
examines the forecasting properties of the estimated models, while
Section VI offers some concluding remarks.

II.  Methodology

Given a covariance stationary process {xt, t = 0, ±1, … }, with
autocovariance function E[(xt – Ext)(xt–j – Ext)] = γj, according to
McLeod and Hipel (1978), xt displays the property of long memory if

lim
T

T j
j T





is infinite. An alternative definition, based on the frequency domain is
as follows. Suppose that xt has an absolutely continuous spectral
distribution, and therefore a spectral density function, denoted by f(λ),
and defined as

  1
cos , .

2 j
j

f j     





   

Then, xt displays long memory if this function has a pole at some
frequency λ in the interval [0, π]. Most of the empirical literature has
focused on the case when the singularity or pole in the spectrum occurs
at the zero frequency. This is true in the standard fractionally integrated
or I(d) models of the form:

(1)(1 ) , 0, 1,...,d
t tL x u t   

with xt = 0, t # 0, and where L is the lag operator (Lxt = xt–1), d is a
positive real value, and ut is an I(0) process defined as a covariance
stationary process with a spectral density function that is positive and
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bounded at all frequencies.1 As previously mentioned these processes
are characterised by a spectral density function which is unbounded at
the zero frequency. 

However, a process may also display a pole or singularity in the
spectrum at a frequency away from zero. In this case, the process may
still display the property of long memory but the autocorrelations
exhibit a cyclical structure that is decaying very slowly. This is the case
of the Gegenbauer processes defined as:

(2)2(1 2cos ) , 1,2,...,d
r t tw L L x u t   

where wr and d are real values, and ut is I(0). For practical purposes we
define wr = 2πr/T, with r = T/s, and thus s will indicate the number of
time periods per cycle, while r refers to the frequency that has a pole or
singularity in the spectrum of xt. Note that if r = 0 (or s = 1), the
fractional polynomial in (2) becomes  which is the polynomial 21 ,dL
associated with the common case of fractional integration at the
long-run or zero frequency. This type of process was introduced by
Andel (1986) and subsequently analysed by Gray et al. (1989, 1994),
Giraitis and Leipus (1995), Chung (1996a,b) and Dalla and Hidalgo
(2005) among many others.

Gray et al. (1989, 1994) showed that the polynomial in (2) can be
expressed in terms of the Gegenbauer polynomial, such that, denoting
μ  = cos wr, for all d … 0,

(3)2
,

0

(1 2 ) ( ) ,d j
j d

j

L L C L 





  

where Cj,d(μ) are orthogonal Gegenbauer polynomial coefficients
recursively defined as:

0, ( ) 1,dC  

1, ( ) 2 ,dC d 

1. The I(0) class of models includes the classical white noise process but also other
structures allowing a weak dependence structure, such as the stationary autoregressive
moving average (ARMA) models.
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, 1, 2,

1 1
( ) 2 1 ( ) 2 1 ( ), 2,3,....j d j d j d

d d
C C C j

j j
    

           
   

(see, for instance, Magnus et al., 1966, Rainville, 1960, etc. for further
details on Gegenbauer polynomials). Gray et al. (1989) showed that xt

in (2) is (covariance) stationary if d < 0.5 for |μ  = cos wr|< 1 and if d <
0.25 for|μ |= 1.2 The model just presented can be generalised to the case
of more than one cyclical structure to consider processes of the form:

(4)( ) 2

1

(1 2cos ) , 1,2,...,j

k
dj

r t t
j

w L L x u t


   

where k is a finite integer indicating the maximum number of cyclical
structures, and where s( j) indicates the number of time( )

( )2j
r jw s

periods per cycle corresponding to the jth cyclical structure. Empirical
studies based on multiple cyclical structures of this type (also named 
k-factor Gegenbauer processes) are Ferrara and Guegan (2001), Sadek
and Khotanzad (2004) and Gil-Alana (2007).

In this paper a flexible specification is adopted that allows us to
analyse long-memory models of the form (1) and (2) in a single
framework. Specifically, it is considered processes of the form:

(5)1 22(1 ) (1 2cos ) , 1,2,...d d
r t tL w L L x u t    

where ut is again I(0), d1 indicates the order of integration at the
long-run or zero frequency, and d2 refers to the cyclical long-run
dependence component.

A parametric approach developed by Robinson (1994) is employed
that is very general in the sense that it allows to consider all the above
specifications in a single framework. This method, based on the Whittle
function in the frequency domain, has the advantage that it is valid for
any real value d (or d1 and d2 in (5)), thus encompassing stationary (d <
0.5) and nonstationary (d $ 0.5) hypotheses. Moreover, the limiting
distribution is standard (normal, in the cases of equations (1) and (2))

2. Note that if |μ |< 1 and d in (2) increases beyond 0.5, the process becomes “more
nonstationary” in the sense, for example, that the variance of the partial sums increases in
magnitude. 



Multinational Finance Journal110

and chi-square in the case of (5)), and this standard limit behaviour
holds independently of the inclusion or exclusion of deterministic terms
in the model and the modelling approach for the I(0) disturbances.
Moreover, Gaussianity is not a requirement, a moment condition of only
2 being necessary.

III.  Empirical results

The time series data examined are the US foreign exchange rates with
respect to the Euro and the Japanese Yen, daily, for the time period
January 4rd, 1999 – October 2nd, 2009. These data were obtained from
the Federal Reserve Bank of St. Louis database (DEXUSEU and
DEXJPUS for the US-Euro and US-Yen rates respectively). Some
descriptive statistics for the two variables are reported in table 1.

Plots of the two series are displayed in the upper half of figure 1,
while their corresponding returns, obtained as the first differences of the
logged values, are shown in the bottom half. First, the order of
integration of the log-series is estimated to determine if they contain
unit roots. For this purpose, initially standard unit root tests (Dickey and
Fuller, ADF, 1979; Phillips and Perron, PP, 1988; Elliot et al., 1996;
and Ng and Perron, NP, 2001) were carried out, finding evidence of unit
roots (the results are not reported for brevity’s sake) in the two series.
However, it is well known that these procedures may have very low
power if the true data generating processes are fractionally integrated.
Therefore, other tests were also performed that, unlike the above, are
not based on autoregressive alternatives but on fractional ones. In
particular, it is considered a regression model of the form:

(6); 1,2,...,t ty t x t    

TABLE 1. Descriptive statistics

Series Mean Std. Deviation Minimum Maximum

US – Euro 1.17045 0.19554 0.82716 1.60100
US – Yen 112.63360 8.96991 87.843 134.776
Rtn: US – Euro 0.0000779 0.006506 –0.030031 0.04620
Rtn: US – Yen –0.0000828 0.006871 –0.052156 0.0323608
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US – Euro US – Yen

US – Euro returns US – Yen returns

 
FIGURE 1.— Foreign exchange rate time series and their corresponding

returns

where xt is assumed to be fractionally integrated as in equation (1).
Thus, if d = 1, the series follows a unit root process.3

Table 2 reports the estimates of d in (6) and (1) for the three
standard cases of no regressors (i.e., α = β = 0 a priori in equation (6)),
an intercept (α unknown, and β = 0 a priori), and an intercept with a
linear time trend (α and β unknown), under the assumption that the error
term (ut in (1)) follows a white noise process, an AR(1), and the
exponential spectral model of Bloomfield (1973) in turn. The latter is
a non-parametric specification that produces autocorrelations decaying
exponentially as in the AR case and allows to approximate ARMA
structures with a small number of parameters.4

3. The presence of outliers (towards the two ends of the sample) was also taken into
account by applying standard procedures in this context. Their presence was found not to alter
the main conclusions reported in the paper. 

4. See Gil-Alana (2004) for the use of fractional integration with Bloomfield
disturbances in the context of Robinson’s (1994) tests. 
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Table 2 displays the 95% confidence intervals formed by the
non-rejection values of d, using Robinson’s (1994) parametric approach
in the frequency domain. It is also presented (in parentheses inside the
square brackets) the Whittle estimates of d (Dahlhaus, 1989) in each
case. It can be seen that the intervals almost always include the unit
root, the only exceptions being the US dollar-Yen rate with an intercept
and with a linear trend, where the estimated value of d is slightly below
1. In all other cases, the estimated d is around 1, hence supporting the
unit root model and justifying the use of returns in the remainder of the
paper.

In what follows the paper focuses on the variance of the return series
and examines the squared and absolute returns, which are used as
proxies for volatility. These two measures have been widely employed
in the financial literature to measure volatility.5 Plots of these series are
displayed in figure 2.

Figure 3 shows the first 1,000 sample autocorrelation values for the
absolute and squared returns of the two series. It can be seen that the

TABLE 2. Estimates of d in the log exchange rates series

i) White noise disturbances

No regressors An intercept A time trend

Log of US-Euro [0.973 (0.996) 1.022] [0.985 (1.007) 1.032] [0.985 (1.007) 1.032]
Log of US-Yen [0.974 (0.997) 1.023] [0.946 (0.969) 0.994] [0.946 (0.969) 0.994]

ii) AR(1) disturbances

No regressors An intercept A time trend

Log of US-Euro [0.927 (0.970) 1.017] [0.971 (1.005) 1.043] [0.971 (1.005) 1.043]
Log of US-Yen [0.980 (0.999) 1.018] [0.940 (0.976) 1.018] [0.940 (0.976) 1.018]

iii) Bloomfield disturbances

No regressors An intercept A time trend

Log of US-Euro [0.949 (0.992) 1.032] [0.971 (1.008) 1.041] [0.971 (1.008) 1.041]
Log of US-Yen [0.953 (0.991) 1.032] [0.943 (0.980) 1.022] [0.943 (0.980) 1.022]

Note:  In brackets the 95% confidence interval for the values of d. In parentheses, the
Whittle estimates. We report in bold the cases where the unit root hypothesis cannot be
rejected. 

5. Absolute returns were employed among others by Ding et al. (1993), Granger and
Ding (1996), Bollerslev and Wright (2000), Gil-Alana (2005), Cavalcante and Assaf (2004),
Sibbertsen (2004) and Cotter (2005), whereas squared returns were used in Lobato and Savin
(1998), Gil-Alana (2003), Cavalcante and Assaf (2004) and Cotter (2005). 
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Absolute returns (US – Euro) Absolute returns (US – Yen)

Squared returns (US – Euro returns) Squared returns (US – Yen returns)

FIGURE 2.— Absolute and squared returns series

Note: The returns were obtained as the first differences of the logged transformed series.

four series display some degree of dependence with these values
decaying very slowly, which may be consistent with fractionally
integrated processes of the form given by equation (1). Moreover, there
is some type of cyclical structure (especially for the Euro returns) which
may imply that models of the form given by (2) or even (5) may also be
plausible for these series. The periodograms, displayed in figure 4, have
the highest values at the smallest frequencies, which is again an
indication of possible I(d) behaviour with d > 0,  though this may be
obscuring other peaks at non-zero frequencies.

First the results based on model 1 are presented, which is the one
that displays long memory exclusively at the long-run or zero frequency,
that is,

(M1); (1 ) , 1,2,...,d
t t t ty t x L x u t      

and, similarly to the results presented in table 2, the three cases of no
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Absolute returns (US – Euro) Absolute returns (US – Yen)

Squared returns (US – Euro returns) Squared returns (US – Yen returns)

 
FIGURE 3.— Correlogram of the absolute and squared returns series

Note: The large sample standard error under the null hypothesis of no autocorrelation is 1/T.

regressors, an intercept, and an intercept with a linear trend are reported,
assuming that the disturbances follow a white noise, an AR(1) and a
Bloomfield-type process in turn.6 The results are displayed in tables 3
and 4 for the absolute and squared returns respectively.

Starting with the absolute returns (in table 3), the estimated values
of d are in all cases strictly positive and smaller than 0.5, i.e. inside the
stationary region, though with some degree of long-memory behaviour.
When not allowing for autocorrelation the estimated value of d is
around 0.10 for the US dollar-Euro rate, and is slightly higher for the
US dollar-Yen one. If autocorrelation is allowed, in the form of either
an AR process or of the Bloomfield model, the values of d are higher
and close to 0.2 in the two series. Very similar results are obtained in
table 4 for the squared returns, with values close to 0.1 with
uncorrelated errors and close to 0.2 with weak autocorrelation. Finally,

6. When using higher AR orders very similar results were obtained.
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Absolute returns (US – Euro) Absolute returns (US – Yen)

Squared returns (US – Euro returns) Squared returns (US – Yen returns)

 
FIGURE 4.— Periodograms of the absolute and squared returns

series 

Note: The periodograms were computed based on the discrete Fourier frequencies 2 .j j T 

regarding the deterministic terms (not reported), the time trend
coefficients were found to be insignificant in all cases, while the
intercept was statistically significant at the 5% level, implying that the
model including an intercept is the one that should be selected in all
cases.

Because of the differences in the results depending on how the error
term is specified, a semi-parametric method (Robinson, 1995) is also
applied, in which the disturbances ut are simply assumed to be I(0) with
no functional form required for them. This method is based on a “local”
Whittle estimate in the frequency domain; it considers a band of
frequencies that degenerates to zero, and the estimate of d is implicitly
defined by:

 
1

1ˆ arg min log ( ) 2 log ,
m

d j
j

d C d d
m
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where m is a bandwidth parameter.7

Figure 5 displays for each series the estimates of d based on the
above procedure using the whole range of parameters for the bandwidth
(displayed on the horizontal axis)8, including the 95% confidence
interval corresponding to the I(0) case. It is clear that the four series
exhibit long-memory (d > 0) behaviour, consistently with the results
based on the parametric approach outlined above and with other studies
such as Granger and Ding (1996).

Next a cyclical long-memory model of the form given by equation
(2) is considered. This is motivated by the periodograms of the series.9

Figure 6 displays the first 100 values of the periodogram for the Fourier
frequencies λr = 2πr/T, (r = T/s), for r = 1, …, 100. It is noteworthy that

TABLE 3. Estimates of d in model (M1) using the absolute returns

i) White noise disturbances

No regressors An intercept A time trend

US-Euro [0.090 (0.103) 0.118] [0.086 (0.098) 0.112] [0.086 (0.098) 0.112]
US-Yen [0.113 (0.130) 0.148] [0.101 (0.116) 0.133] [0.100 (0.115) 0.132]

ii) AR(1) disturbances

No regressors An intercept A time trend

US-Euro [0.181 (0.201) 0.224] [0.170 (0.188) 0.209] [0.170 (0.188) 0.209]
US-Yen [0.186 (0.212) 0.241] [0.162 (0.185) 0.212] [0.160 (0.184) 0.212]

iii) Bloomfield disturbances

No regressors An intercept A time trend

Log of US-Euro [0.204 (0.230) 0.259] [0.189 (0.209) 0.236] [0.189 (0.209) 0.236]
Log of US-Yen [0.198 (0.228) 0.259] [0.169 (0.196) 0.226] [0.168 (0.196) 0.226]

7. Further refinements of this approach can be found in Velasco (1999), Phillips and
Shimotsu (2004, 2005), Abadir et al., 2007, etc. Applying some of these methods we obtain
almost identical results to those reported here.

8. The choice of the bandwidth is crucial since it affects the trade-off between bias and
variance; specifically, the asymptotic variance and the bias of this estimator are decreasing
and increasing with m respectively.

9. Note that the periodogram is an asymptotic unbiased (though not consistent) estimate
of the spectral density function.
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for the US Dollar-Euro case the highest value of the periodogram does
not occur at the smallest frequency (r = 1) but instead at r = 4, which
should correspond to cycles with a periodicity of T/4 . 677 periods
(days). By contrast, for the US Dollar-Yen case the highest value is
found at the smallest frequency r = 1, followed by r = 19 (T/19 . 142
periods). Therefore, model 2 is specified as:

(M2)2; (1 2cos ) , 1,2,...,d
t t r t ty x w L L x u t     

 
with wr = 2π/677 in case of the US Dollar-Euro absolute and squared
return series and wr = 2π/142 for the US Dollar-Yen values. The results
using the above model are displayed in tables 5 and 6.

Two models, without regressors (α = 0 in (M2)) and with an
intercept, are considered. Another version of Robinson’s (1994)
parametric tests is employed here, testing the null hypothesis Ho: d = do,
in (M2) for a range of values of do from 0 to 1 with 0.001 increments,
and s in wr equal to 600, …, 700 for the US Dollar-Euro case, and s =
100, …, 200 for the US Dollar-Yen one. The model that produces the
lowest statistic in Robinson (1994) for different values for s and d is
selected. It is noteworthy that the estimated values of s are equal to 677
and 142 respectively for the two series, which correspond to some of the
highest peaks in the periodograms displayed in figure 6 (specifically, the
highest peak for the US dollar-Euro rate, and the second highest for the

TABLE 4. Estimates of d in model (M1) using the squared returns

i) White noise disturbances

No regressors An intercept A time trend

US-Euro [0.092 (0.105) 0.118] [0.093 (0.106) 0.120] [0.091 (0.104) 0.120] 
US-Yen [0.010 (0.116) 0.135] [0.097 (0.114) 0.132] [0.095 (0.112) 0.131] 

ii) AR(1) disturbances

No regressors An intercept A time trend

US-Euro [0.190 (0.210) 0.236] [0.190 (0.212) 0.237] [0.188 (0.211) 0.235] 
US-Yen [0.163 (0.191) 0.224] [0.158 (0.186) 0.218] [0.156 (0.184) 0.217] 

iii) Bloomfield disturbances

No regressors An intercept A time trend

US-Euro [0.201 (0.228) 0.351] [0.201 (0.228) 0.352] [0.200 (0.227) 0.356] 
US-Yen [0.163 (0.193) 0.235] [0.160 (0.189) 0.221] [0.159 (0.188) 0.221] 
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Absolute returns (US – Euro) Absolute returns (US – Yen)

Squred returns (US – Euro returns) Squared returns (US – Yen returns)

 
FIGURE 5.— Estimates of d based on the Whittle semiparametric

method (Robinson, 1995)
Note: The horizontal axis refers to the bandwidth parameter while the vertical one displays
the estimates of d.

US dollar- Yen rate).
Starting with the absolute values of the returns (see table 5), it is

found that the differencing parameter is strictly positive and significant,
though very close to 0 in all cases: the estimated values of d are 0.035
(US Dollar-Euro) and 0.049 (US Dollar-Yen) for the cases of white
noise and Bloomfield disturbances, and 0.075 (US Dollar-Euro) and
0.080 (US Dollar-Yen) with AR(1) errors. For the squared returns (table
6) the values are again significant though slightly higher: 0.042 (US
Dollar-Euro) and 0.050 (US Dollar-Yen) with uncorrelated and
Bloomfield errors, and 0.092 (US Dollar-Euro) and 0.083 (US
Dollar-Yen) with AR(1) disturbances. Once more, the intercepts are
statistically significant in all cases.
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Absolute returns (US – Euro) Absolute returns (US – Yen)

Squred returns (US – Euro returns) Squared returns (US – Yen returns)

 
FIGURE 6.— First 100 values in the periodograms of the absolute

and squared returns

Note: The periodograms were computed based on the discrete Fourier frequencies 2 .j j T 

Finally the case of a long-memory model that simultaneously takes
into account the long-run and the cyclical structures is examined.
Therefore, model 3 is specified as:

(M3)1 22; (1 ) (1 2cos ) , 1,2,...,d d
t t r t ty x L w L L x u t      

once more focusing on the cases of no regressors (α = 0 in (M3)) and an
intercept, for uncorrelated and correlated (AR and Bloomfield) errors.

The results based on (M3) are displayed in tables 7 and 8.
Interestingly, the selected models are once more those for the frequency
r that corresponds to s = 677 for the US Dollar-Euro series case and to
s = 142 for the US Dollar-Yen one. Concerning the estimates of the
fractional differencing parameters, for the US Dollar-Euro d1 is not
significantly different from zero, and the same holds for d2 in the case
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of the US Dollar-Yen. Therefore, model 2 and model 1 appear to be the
most adequate ones for the US Dollar-Euro and the US Dollar-Yen
cases respectively. We also perform LR tests to choose between models
1 and 3 for the US Dollar-Yen, and between models 2 and 3 for the US
Dollar-Euro; these provide further evidence that model 2 (long-run
cyclical dependence) is more appropriate for the US Dollar-Euro
(absolute and squared) returns, and model 1 (standard I(d)) for the US
Dollar-Yen values. 

On the basis of this evidence as well as the t-values for the
deterministic terms the models below are selected. For the US
dollar-Euro series:

(7)2 0.036
40.00479 ; (1 2cos ) , 1,2,...,t t t ty x w L L x u t     

in the case of the absolute returns, and

(8)2 0.042
40.000042 ; (1 2cos ) , 1,2,...,t t t ty x w L L x u t     

for the squared returns.
However, for the US dollar-Yen values, a model with long memory

only at the zero frequency seems to be more adequate, namely

0.185
10.00526 ; (1 ) ; 0.144 ,t t t t t t ty x L x u u u       

(9)
1,2,...,t 

for the absolute returns, and

0.186
10.000051 ; (1 ) ; 0.139 ,t t t t t t ty x L x u u u       

(10)
1,2,...,t 

for the squared values.
Clearly, both volatility series are characterised by long memory, but

in case of the US dollar – Yen rate this affects the long run structure of
the process, while in the case of the US dollar – Euro there is an
underlying cyclical pattern.
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IV.  Stability tests and structural breaks

In this section it is examined whether the results reported in Section III
are stable over the sample period or instead subject to structural change.
For this purpose once more the versions of Robinson’s (1994) tests
employed in Section III are performed, using the specifications
described above, starting with a sample of 1,500 observations and then
adding recursively five observations each time till the end of the sample
(with 2,710 observations). Figure 7 displayes the estimated values of d
for the absolute return series, for the Euro case (the upper plot) and for
the Japanese Yen (in the lower part of the figure) respectively. In the
former case, a model of a similar form to the one given by equation (8)
is employed, i.e., using cyclical fractional integration,

2; (1 2cos ) , 1,2,...,d
t t r t ty x w L L x u t     

while in the latter case (Japanese yen absolute returns) we use a model
similar to equation (10), i.e., based on a standard I(d) model,

1; (1 ) ; , 1,2,....d
t t t t t t ty x L x u u u t        

As can be seen, for the US dollar-Euro absolute returns the estimated
value of the (cyclical) fractional differencing parameter remains close
to 0 (and statistically insignificant) for each subsample until the one
ending at the observation 2035, which corresponds to February 5, 2007.
If observations after that date are included, the estimate is above 0.010,
becoming significantly different from 0 for each subsample till the end
of the sample period, with another increase at observation 2460
(October 6, 2008). Focusing now on the US dollar-Yen case, the
estimate of the fractional differencing parameter, d, is relatively stable
till observation 2320 (March 20, 2008), with values around 0.12; there
is then an increase (with values close to 0.15) till observation 2460
(October 6, 2008), and another one (d about 0.20) until the end of the
sample. Similar results (not reported for reasons of space) were obtained
for the squared returns.

Because of the instability in the estimated fractional differencing
parameter (see figure 7) in what follows three different subsamples for
each series are considered. These are: for the US dollar-Euro, [January
4, 1999 – February 5, 2007]; [February 6, 2007 – October 6, 2008] and
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Absolute returns for the US – Euro rate

Absolute returns for the US – Yen rate

 
FIGURE 7.— Recursive estimates of the fractional differencing

parameter 
Note: The thin lines refer to the 95% confidence interval.

[October 7, 2008 – October 2, 2009], and for the US dollar-Yen
[January 4, 1999 – March 20, 2008], [March 21, 2008 – October 6,
2008] and [October 7, 2008 – October 2, 2009].

Table 9 displays the estimates of the long-run and the cyclical
fractional differencing parameters using model 1 and model 2 for each
subsample and each series. The upper and lower half of the table
concern the absolute and squared returns respectively. Considering the
subsamples separately it can be seen that some of the estimates are
statistically significant, especially in the case of model 1 (with long
memory at the long-run or zero frequency). Also, the estimated value of
d for model 1 is higher in the second subsample and lower in the third
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subsample for the US dollar-Euro rate (for both absolute and squared
returns), whilst for the US dollar-Yen rate there is a decrease in the
second subsample and an increase in the third one (see table 9).

The above approach assumes that the break dates are known. In what
follows, it is used instead a procedure developed by Gil-Alana (2008)
that endogenously determines the number of breaks and the break dates
along with the parameters in the model. In what follows, this approach
is briefly described which is based on minimizing the residuals sum of
squares across the different subsamples. Gil-Alana (2008) considers the
following model,

(11); (1 ) , 1,..., , 1,... ,i

b

dT i
t i t t t ty z x L x u t T i nb     

where nb is the number of breaks (i.e., nb = 0, 1, 2, 3), yt is the observed
time series, the βi’s are the coefficients corresponding to the
deterministic terms; the di’s are the orders of integration for each
subsample, and the T b

i’s correspond to the dates of the unknown breaks.
The method is based on minimizing the residuals sum of squares for a
grid of values of the fractional differencing parameters and the time
breaks.

The results using this approach indicate that there are two potential
breaks for the US –Euro absolute returns, which coincide with the
values obtained in figure 7 (i.e., February, 2007, and October, 2008).
However, for the US – Yen absolute returns, only one break is detected,
occurring in October 2008 (which is the second one of the two detected
in figure 7). Evidence of a small degree of long memory (d > 0) is
obtained across all the subsamples.

V.  Forecasting performance

In this section the forecasting accuracy of the models presented in
previous sections is examined. For this purpose, it is considered for each
of the four series (i.e. the absolute and squared returns of the US dollar
exchange rates against the Euro and the Japanese Yen) the three models
that have been presented in Section 3, i.e., model 1 (M1): fractional
integration at the zero frequency; model 2 (M2): fractional cyclical
integration; and model 3 (M3): fractional integration at both the zero
and the cyclical frequencies.
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An in-sample forecasting experiment is performed to establish which
of the three models (M1, M2 or M3) performs best for each series. First,
the root mean squared errors are computed for the last 100 observations
in the sample. Then, the modified Diebold and Mariano (M-DM, 1995)
statistic as suggested by Harvey, Leybourne and Newbold (1997) is
conducted.10

Using the M-DM test statistic, the relative forecast performance of
the different models is performed by making pairwise comparisons. The
root mean squared errors is used in the computations. The results are
displayed in tables 10, 11 and 12 respectively for 50, 75 and 100-period
ahead predictions.

For each prediction-horizon it is indicated in the tables in bold the
rejections of the null hypothesis that the forecast performance of model
(Mi) and model (Mj) is equal in favour of the one-sided alternative that
model (Mi)’s performance is superior at the 5% significance level. The
results for the three time horizons are consistent with the conclusions
based on the estimation results of Section III: model 2 (M2), i.e., the
cyclical fractionally integrated one, seems to be the most adequate
specification for the US dollar- Euro absolute and squared returns, while
model 1 (M1), the standard I(d) model, is the preferred one for the two
US dollar/ Yen returns series. 

VI.  Conclusions

This paper has applied long-memory methods to analyse the US dollar
rate vis-à-vis the Euro and the Japanese Yen at a daily frequency, with
particular attention being paid to volatility modelling and forecasting.
Specifically, a more general fractional integration model compared with
previous studies is estimated, allowing for dependence not only at the
zero but also at other frequencies. The results show differences in the
behaviour of the two series: a long–memory (Gegenbauer) process
capturing the underlying cyclical structure and a standard I(d) model
seem to be the most appropriate for the US dollar rate vis-à-vis the Euro
and the Japanese Yen respectively. Consequently, mean reversion with
hyperbolical decay occurs in both cases in response to exogenous

10. Harvey et al. (1997) and Clark and McCracken (2001) show that this modified test
statistic performs better than the DM test statistic in finite samples, and also that the power
of the test is improved when p-values are computed with a Student t-distribution. 
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shocks to the volatility process, but in the former cyclicality is present.
The in-sample forecasting analysis also indicates that the cyclical
fractional model outperforms other models in case of the Euro return
series, while a standard I(d) model outperforms other long memory
models in the case of the Yen returns.

The analysis carried out in this paper can be extended to allow for
non-linear structures and other procedures in the context of structural
breaks as the one based on Markov-Switching models proposed by Tsay
and Hardle (2009) could be applied. Work along these lines will be
carried out in future papers.

Accepted by:   Prof. P. Theodossiou, Editor-in-Chief, August 2011
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